Mathematical Morphology for Tensor Data Induced by the Loewner Ordering in Higher Dimensions
نویسندگان
چکیده
Positive semidefinite matrix fields are becoming increasingly important in digital imaging. One reason for this tendency consists of the introduction of diffusion tensor magnetic resonance imaging (DTMRI). In order to perform shape analysis, enhancement or segmentation of such tensor fields, appropriate image processing tools must be developed. This paper extends fundamental morphological operations to the matrix-valued setting. We start by presenting novel definitions for the maximum and minimum of a set of matrices since these notions lie at the heart of the morphological operations. In contrast to naive approaches like the component-wise maximum or minimum of the matrix channels, our approach is based on the Loewner ordering for symmetric matrices. The notions of maximum and minimum deduced from this partial ordering satisfy desirable properties such as rotation invariance, preservation of positive semidefiniteness, and continuous dependence on the input data. We introduce erosion, dilation, opening, closing, top hats, morphological derivatives, shock filters, and mid-range filters for positive semidefinite matrix-valued images. These morphological operations incorporate information simultaneously from all matrix channels rather than treating them independently. Experiments on DT-MRI images with balland rod-shaped structuring elements illustrate the properties and performance of our morphological operators for matrix-valued data.
منابع مشابه
Morphology for Higher-Dimensional Tensor Data Via Loewner Ordering
The operators of greyscale morphology rely on the notions of maximum and minimum which regrettably are not directly available for tensor-valued data since the straightforward component-wise approach fails. This paper aims at the extension of the maximum and minimum operations to the tensor-valued setting by employing the Loewner ordering for symmetric matrices. This prepares the ground for matr...
متن کاملMorphology for matrix data: Ordering versus PDE-based approach
Matrix fields are becoming increasingly important in digital imaging. In order to perform shape analysis, enhancement or segmentation of such matrix fields, appropriate image processing tools must be developed. This paper extends fundamental morphological operations to the setting of matrices, in the literature sometimes referred to as tensors despite the fact that matrices are only rank two te...
متن کاملFrames, the Loewner order and eigendecomposition for morphological operators on tensor fields
6 Rotation invariance is an important property for operators on tensor fields, but up to now, most methods for morphology on tensor fields had to either sacrifice rotation invariance, or do without the foundation of mathematical morphology: a lattice structure. Recently, we proposed a framework for rotation-invariant mathematical morphology on tensor fields that does use a lattice structure. In...
متن کاملMorphology for Color Images via Loewner Order for Matrix Fields
Mathematical morphology is a very successful branch of image processing with a history of more than four decades. Its fundamental operations are dilation and erosion, which are based on the notion of a maximum and a minimum with respect to an order. Many operators constructed from dilation and erosion are available for grey value images, and recently useful analogs of these processes for matrix...
متن کاملOrder Based Morphology for Color Images via Matrix Fields
Mathematical morphology is a successful branch of image processing with a history of more than four decades. Its fundamental operations are dilation and erosion, which are based on the notion of supremum and infimum with respect to an order. From dilation and erosion one can build readily other useful elementary morphological operators and filters, such as opening, closing, morphological top-ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005